Final Exam
015-157 Calculus II
Spring, 1999

Please do all problems. Points are written to the left of each problem.

50 pts 1. Evaluate the following integrals:
 (a) \(\int \frac{3x}{1 + x^2} \, dx \)
 (b) \(\int \frac{1}{x(\ln x)^2} \, dx \)
 (c) \(\int xe^{-2x} \, dx \)
 (d) \(\int \ln \sqrt{x} \, dx \)
 (e) \(\int \frac{1}{(x + 1)(x - 2)} \, dx \)

10 pts 2. Approximate the integral \(\int_{1}^{2} \frac{1}{x} \, dx \) by one of the following methods, with \(n = 4 \): \(L_4 \), the left endpoint sum; \(R_4 \), the right endpoint sum; \(M_4 \), the midpoint rule; or \(T_4 \), the trapezoid rule.

10 pts 3. Determine whether the improper integral \(\int_{0}^{4} \frac{dx}{\sqrt{x}} \) converges or diverges. If it converges, find its value.

5 pts 4(a) Find the area bounded by the graphs of \(y = x \) and \(y = 4x - x^2 \).

10 pts 4(b) Find the volume generated when the region bounded by \(y = x \) and \(y = 4x - x^2 \) is rotated around the x-axis.

10 pts 5. Find the length of the curve parametrized by \(x(t) = t^2 \) and \(y(t) = \frac{3}{2}t^3 \) for \(0 \leq t \leq 1 \).

10 pts 6. (a) Find an equation in \(x \) and \(y \) that has the same graph as the polar equation \(r = a \sin \theta \) with \(a > 0 \).

 (b) Sketch the graph.

10 pts 7. Find the area of the region bounded by the cardioid \(r = 2 + 2 \cos \theta \).
10 pts 8. Solve the initial value problem.

\[\frac{dy}{dx} = \frac{1 + x}{xy}, \quad x > 0, \quad y(1) = 4. \]

10 pts 9. A bacterial culture starts with 500 bacteria and grows at a rate proportional to its size. After 3 hours, there are 8,000 bacteria.
(a) Find an expression for the number of bacteria after \(t \) hours.
(b) When will there be 30,000 bacteria?

30 pts 10. Tell whether each of the following series is absolutely convergent, conditionally convergent, or divergent.

(a) \[\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3}{n + 4} \]

(b) \[\sum_{n=1}^{\infty} \frac{\sin(2n)}{n^2} \]

(c) \[\sum_{n=1}^{\infty} \frac{(n + 1)5^n}{n3^{2n}} \]

20 pts 11. Find the radius of convergence and the interval of convergence of the following series.

(a) \[\sum_{n=0}^{\infty} \frac{x^n}{n + 2} \]

(b) \[\sum_{n=1}^{\infty} \frac{(x - 4)^n}{n5^n} \]

10 pts 12(a) Find the McLaurin polynomial \(P_3(x) \) for \(f(x) = e^x \). (That is, the Taylor polynomial with \(a = 0 \) and \(n = 3 \).)

5 pts 12(b) Estimate the accuracy of the polynomial on \(0 \leq x \leq 0.1 \) using the remainder term.